Determine Factoring x^3+x^2+4x+4 Over Complex
In mathematics, a factor is a number or algebraic expression that divides another number or expression evenly, leaving no remainder. Here you can check the answer to Determine Factoring x^3+x^2+4x+4 Over Complex.
Ex: x^2+1 (or) x^2+2xi-1
How to Determine Factoring x^3+x^2+4x+4 Over Complex?
=x^3 + x^2 + 4x + 4
=(x^3)+(x^2)+(-2ix^2)+(-2ix)+(2ix^2)+(2ix)+(4x)+(4)
=((x^2)(x)+(x)(x)+(-2ix)(x)+(-2i)(x)+(x^2)(2i)+(x)(2i)+(-2ix)(2i)+(-2i)(2i))
=((x^2)((x + 2i))+(x)((x + 2i))+(-2ix)((x + 2i))+(-2i)((x + 2i)))
=((x)(x)+(1)(x)+(x)(-2i)+(1)(-2i))(x + 2i)
=((x)((x - 2i))+(1)((x - 2i)))(x + 2i)
=(x+1)(x-2i)(x+2i)
FAQs on Factoring x^3+x^2+4x+4 Over Complex
1. What is the Factoring of x^3+x^2+4x+4?
The Factoring x^3+x^2+4x+4 Over complex numbers is .
2. Where can I get the detailed answer to determine factoring x^3+x^2+4x+4 over complex numbers?
You can get detailed solution steps for Factoring Polynomial x^3+x^2+4x+4 over complex numbers on this page.
3. How can I solve Factoring Polynomial x^3+x^2+4x+4 over complex numbers Problem by using Factoring Over Complex Numbers Calculator?
Simply enter the input expression in the above calculator form & tap on the calculate button to solve the expression & get the result in no time via our free online Factoring Over Complex Numbers Calculator