Determine Factoring x^3+4x^2+16x+64 Over Complex
In mathematics, a factor is a number or algebraic expression that divides another number or expression evenly, leaving no remainder. Here you can check the answer to Determine Factoring x^3+4x^2+16x+64 Over Complex.
Ex: x^2+1 (or) x^2+2xi-1
How to Determine Factoring x^3+4x^2+16x+64 Over Complex?
=x^3 + 4x^2 + 16x + 64
=(x^3)+(4x^2)+(-4ix^2)+(-16ix)+(4ix^2)+(16ix)+(16x)+(64)
=((x^2)(x)+(4x)(x)+(-4ix)(x)+(-16i)(x)+(x^2)(4i)+(4x)(4i)+(-4ix)(4i)+(-16i)(4i))
=((x^2)((x + 4i))+(4x)((x + 4i))+(-4ix)((x + 4i))+(-16i)((x + 4i)))
=((x)(x)+(4)(x)+(x)(-4i)+(4)(-4i))(x + 4i)
=((x)((x - 4i))+(4)((x - 4i)))(x + 4i)
=(x+4)(x-4i)(x+4i)
FAQs on Factoring x^3+4x^2+16x+64 Over Complex
1. What is the Factoring of x^3+4x^2+16x+64?
The Factoring x^3+4x^2+16x+64 Over complex numbers is .
2. Where can I get the detailed answer to determine factoring x^3+4x^2+16x+64 over complex numbers?
You can get detailed solution steps for Factoring Polynomial x^3+4x^2+16x+64 over complex numbers on this page.
3. How can I solve Factoring Polynomial x^3+4x^2+16x+64 over complex numbers Problem by using Factoring Over Complex Numbers Calculator?
Simply enter the input expression in the above calculator form & tap on the calculate button to solve the expression & get the result in no time via our free online Factoring Over Complex Numbers Calculator