Determine Factoring x^3-11x^2+43x-65 Over Complex
In mathematics, a factor is a number or algebraic expression that divides another number or expression evenly, leaving no remainder. Here you can check the answer to Determine Factoring x^3-11x^2+43x-65 Over Complex.
Ex: x^2+1 (or) x^2+2xi-1
How to Determine Factoring x^3-11x^2+43x-65 Over Complex?
=x^3 - 11x^2 + 43x - 65
=(x^3)+(-8x^2)+(-2ix^2)+(15x)+(10ix)+(-3x^2)+(24x)+(6ix)+(-45)+(-30i)+(2ix^2)+(-16ix)+(4x)+(30i)+(-20)
=((x^2)(x)+(-8x)(x)+(-2ix)(x)+(15)(x)+(10i)(x)+(x^2)(-3)+(-8x)(-3)+(-2ix)(-3)+(15)(-3)+(10i)(-3)+(x^2)(2i)+(-8x)(2i)+(-2ix)(2i)+(15)(2i)+(10i)(2i))
=((x^2)((x - 3 + 2i))+(-8x)((x - 3 + 2i))+(-2ix)((x - 3 + 2i))+(15)((x - 3 + 2i))+(10i)((x - 3 + 2i)))
=((x)(x)+(-5)(x)+(x)(-3)+(-5)(-3)+(x)(-2i)+(-5)(-2i))(x - 3 + 2i)
=((x)((x - 3 - 2i))+(-5)((x - 3 - 2i)))(x - 3 + 2i)
=(x-5)(x-3-2i)(x-3+2i)
FAQs on Factoring x^3-11x^2+43x-65 Over Complex
1. What is the Factoring of x^3-11x^2+43x-65?
The Factoring x^3-11x^2+43x-65 Over complex numbers is .
2. Where can I get the detailed answer to determine factoring x^3-11x^2+43x-65 over complex numbers?
You can get detailed solution steps for Factoring Polynomial x^3-11x^2+43x-65 over complex numbers on this page.
3. How can I solve Factoring Polynomial x^3-11x^2+43x-65 over complex numbers Problem by using Factoring Over Complex Numbers Calculator?
Simply enter the input expression in the above calculator form & tap on the calculate button to solve the expression & get the result in no time via our free online Factoring Over Complex Numbers Calculator