Factoring Over Multivariable Polynomials Calculator GCF of Polynomial Calculator Factor out the GCF from the Polynomial Calculator Determining if Polynomial is Prime LCM of Polynomials Using GCF Factoring Binomials as sum or difference of cubes Factoring Difference Square Polynomial Calculator Polynomial Root Calculator Factoring Over Complex Numbers Polynomial Equation Solver Calculator Adding Polynomials Calculator Subtracting Polynomials Calculator Multiplying Polynomials Calculator Dividing Polynomials Calculator Polynomial in Ascending Order Calculator Polynomial in Descending Order Calculator Determining if the expression is a Polynomial Degree of a Polynomial Calculator Leading Term of a Polynomial Calculator

Created By : Rina Nayak

Reviewed By : Rina Nayak

Last Updated : Apr 17, 2023


This Binomial Expansion Calculator is helpful for Finding Binomial Expansion of (2+h) 3 . We can easily calculate the value of an expression having lower power but the binomial theorem can fine binomial expansion for any expression. In this article, we will find the Binomial Expansion of (2+h) 3 in some easy and quick steps.

Ex: (x+1)^2 (or) (x+7)^7 (or) (x+3)^4

Use '^' for exponent

Binomial Expansion of:

Elaborate Steps to Expand $(1-3x)^7$ Using Binomial Theorem

Given expression is $(1 - 3*x)^7$

The binomial Theorem says that to expand any non-negative power of binomial (x+y), then use the below formula,

=> (x+y)n = nC0xny0 +nC1xn-1y1 + nC2xn-2y2 + ... + nCn-1x1yn-1 +nCnx0yn

$(1 - 3.x)^7$ = $\\sum_{k=0}^7 {^7C_k}((1)^{7-k}(-3.x)^{k})$

By expansion,

$(1 - 3*x)^7$=

$\frac{7!}{(7-0)!0!}(1)^{7-0}\times{}(-3.x)^0+\frac{7!}{(7-1)!1!}(1)^{7-1}\times{}(-3.x)^1+\frac{7!}{(7-2)!2!}(1)^{7-2}\times{}(-3.x)^2+\frac{7!}{(7-3)!3!}(1)^{7-3}\times{}(-3.x)^3+\frac{7!}{(7-4)!4!}(1)^{7-4}\times{}(-3.x)^4+\frac{7!}{(7-5)!5!}(1)^{7-5}\times{}(-3.x)^5+\frac{7!}{(7-6)!6!}(1)^{7-6}\times{}(-3.x)^6+\frac{7!}{(7-7)!7!}(1)^{7-7}\times{}(-3.x)^7$

$= \frac{5040}{(5040)1}(1)^{7-0}\times{}(-3.x)^0+\frac{5040}{(720)1}(1)^{7-1}\times{}(-3.x)^1+\frac{5040}{(120)2}(1)^{7-2}\times{}(-3.x)^2+\frac{5040}{(24)6}(1)^{7-3}\times{}(-3.x)^3+\frac{5040}{(6)24}(1)^{7-4}\times{}(-3.x)^4+\frac{5040}{(2)120}(1)^{7-5}\times{}(-3.x)^5+\frac{5040}{(1)720}(1)^{7-6}\times{}(-3.x)^6+\frac{5040}{(1)5040}(1)^{7-7}\times{}(-3.x)^7$

$= 1(1)^{7-0}\times{}(-3.x)^0+7(1)^{7-1}\times{}(-3.x)^1+21(1)^{7-2}\times{}(-3.x)^2+35(1)^{7-3}\times{}(-3.x)^3+35(1)^{7-4}\times{}(-3.x)^4+21(1)^{7-5}\times{}(-3.x)^5+7(1)^{7-6}\times{}(-3.x)^6+1(1)^{7-7}\times{}(-3.x)^7$

$= (1)^{7-0}\times{}(-3.x)^0+(7)(1)^{7-1}\times{}(-3.x)^1+(21)(1)^{7-2}\times{}(-3.x)^2+(35)(1)^{7-3}\times{}(-3.x)^3+(35)(1)^{7-4}\times{}(-3.x)^4+(21)(1)^{7-5}\times{}(-3.x)^5+(7)(1)^{7-6}\times{}(-3.x)^6+(1)^{7-7}\times{}(-3.x)^7$

$= (1)^{7}\times{}(-3.x)^0+(7)(1)^{6}\times{}(-3.x)^1+(21)(1)^{5}\times{}(-3.x)^2+(35)(1)^{4}\times{}(-3.x)^3+(35)(1)^{3}\times{}(-3.x)^4+(21)(1)^{2}\times{}(-3.x)^5+(7)(1)^{1}\times{}(-3.x)^6+(1)^{0}\times{}(-3.x)^7$

$= (1)^{7}\times{}1+(7)(1)^{6}\times{}(-3.x)^1+(21)(1)^{5}\times{}(-3.x)^2+(35)(1)^{4}\times{}(-3.x)^3+(35)(1)^{3}\times{}(-3.x)^4+(21)(1)^{2}\times{}(-3.x)^5+(7)(1)^{1}\times{}(-3.x)^6+1\times{}(-3.x)^7$

$= 1\times{}(1)+(7)1\times{}(-3.x)+(21)1\times{}(9.x^2)+(35)1\times{}(-27.x^3)+(35)1\times{}(81.x^4)+(21)1\times{}(-243.x^5)+(7)1\times{}(729.x^6)+1\times{}(-2187.x^7)$

$= -2187x^7 + 5103x^6 - 5103x^5 + 2835x^4 - 945x^3 + 189x^2 - 21x + 1$

Therefore, the binomial expansion of $(1 - 3.x)^7$ is $-2187x^7 + 5103x^6 - 5103x^5 + 2835x^4 - 945x^3 + 189x^2 - 21x + 1$

FAQs on Binomial Expansion of $(1-3x)^7$

1. How many terms are in the binomial expression of $(1-3x)^7$?

The number of terms in the binomial expansion of $(1-3x)^7$ is 8


2. How to find the binomial expansion of $(1-3x)^7$ ?

We use the Binomial theorem to find the expansion of $(1-3x)^7$ . The formula is (x + y)n = Σr=0n (nCr xn – ryr).


3. What is the binomial expansion of $(1-3x)^7$ ?

The binomial expansion of $(1-3x)^7$ is $-2187x^7 + 5103x^6 - 5103x^5 + 2835x^4 - 945x^3 + 189x^2 - 21x + 1$ .