Addition of Polynomials x^2-151x+88-6x^2+128x+144
Polynomial addition is the process of adding terms from two or more algebraic equations while maintaining the sign of each term. Here you can check the answer for Addition of Polynomials 26t^2-215t+97+9t^2-23t+8.
Ex: x^5+x^5+1+x^5+x^3+x (or) x^5+3x^5+1+x^6+x^3+x (or) x^3+x^5+1+x^3+x^3+x
How to Find the Addition of Polynomials x^2-151x+88-6x^2+128x+144
Given that,
x^2-151x+88-6x^2+128x+144
We obtain 128 x - (x^2 + 6 x^2 - 151 x + 88) + 144 by grouping related terms.
We obtain 128 x - 5 x^2 + 151 x - 88 + 144 by combining related terms.
x has related terms 128 x
x^2 has related terms - 7 x^2 + 151 x - 88
Having added all the related terms, we arrive at - 5 x^2 + 279 x + 56
So, x^2-151x+88-6x^2+128x+144 = - 5 x^2 + 279 x + 56
FAQs on Addition of Polynomials -x^2-151x+88-6x^2+128x+144
1. What is the result of polynomials - x^2-151x+88-6x^2+128x+144?
Addition of Polynomials -x^2-151x+88-6x^2+128x+144 is - - 5 x^2 + 279 x + 56
2. How do you quickly add the polynomials -x^2-151x+88-6x^2+128x+144?
Add polynomials -x^2-151x+88-6x^2+128x+144 by similar grouping related words and adding them all together.
3. Where can I find a clear explanation of how to add the polynomials -x^2-151x+88-6x^2+128x+144?
On our page, you can get a full explanation of how to add the polynomials -x^2-151x+88-6x^2+128x+144