Finding Factoring of a^3+27 Using Sum or Difference of Cubes
Factoring Binomials as Sum or difference of cubes Calculator tool is helpful to find the factors of a^3+27 with the sum or difference of cubes process. Get the manual process for Finding Factoring of a^3+27 Using Sum or Difference of Cubes here.
Use '^' for exponent
Solution for Factoring Binomials as Sum or Difference of Cubes a^3+27
The given expression is a^3+27
By separating each expression we get
(a^3+27)
The given polynomial is (a^3+27)
The polynomial can be written as a^3 + 27
=(a)(a^2)+(3)(a^2)+(a)(-3a)+(3)(-3a)+(a)(9)+(3)(9)
=(a)((a2 - 3a + 9))+(3)((a2 - 3a + 9))
=(a + 3) (a^2 - 3 a + 9)
After getting indivisual factoring we can cancelout similar terms and The final result will be (a + 3) (a^2 - 3 a + 9)
FAQs on Factoring a^3+27 with Sum or Difference of Cubes
1. What are the factors for a a^3+27 using the sum or difference of cubes?
The factor for a^3+27 is (a + 3) (a^2 - 3 a + 9)
2. How can I use the sum or difference of cubes method to factorize the given equation?
You can first find the factors of the given equation a^3+27, then by performing simple mathematical calculations you can get the desired factors.