###### Factoring Over Multivariable Polynomials CalculatorGCF of Polynomial CalculatorFactor out the GCF from the Polynomial CalculatorDetermining if Polynomial is PrimeLCM of Polynomials Using GCFFactoring Binomials as sum or difference of cubesFactoring Difference Square Polynomial CalculatorPolynomial Root CalculatorFactoring Over Complex NumbersPolynomial Equation Solver CalculatorAdding Polynomials CalculatorSubtracting Polynomials CalculatorMultiplying Polynomials CalculatorDividing Polynomials CalculatorPolynomial in Ascending Order CalculatorPolynomial in Descending Order CalculatorDetermining if the expression is a PolynomialDegree of a Polynomial CalculatorLeading Term of a Polynomial Calculator

Created By : Rina Nayak

Reviewed By : Rina Nayak

Last Updated : Apr 17, 2023

This Binomial Expansion Calculator is helpful for Finding Binomial Expansion of (2+h) 3 . We can easily calculate the value of an expression having lower power but the binomial theorem can fine binomial expansion for any expression. In this article, we will find the Binomial Expansion of (2+h) 3 in some easy and quick steps.

Ex: (x+1)^2 (or) (x+7)^7 (or) (x+3)^4

Use '^' for exponent

Binomial Expansion of:

## Elaborate Steps to Expand $(10a+b)^6$ Using Binomial Theorem

Given expression is $(10*a + b)^6$

The binomial Theorem says that to expand any non-negative power of binomial (x+y), then use the below formula,

=> (x+y)n = nC0xny0 +nC1xn-1y1 + nC2xn-2y2 + ... + nCn-1x1yn-1 +nCnx0yn

$(10.a + b)^6$ = $\\sum_{k=0}^6 {^6C_k}((10.a)^{6-k}(b)^{k})$

By expansion,

$(10*a + b)^6$=

$\frac{6!}{(6-0)!0!}(10.a)^{6-0}\times{}(b)^0+\frac{6!}{(6-1)!1!}(10.a)^{6-1}\times{}(b)^1+\frac{6!}{(6-2)!2!}(10.a)^{6-2}\times{}(b)^2+\frac{6!}{(6-3)!3!}(10.a)^{6-3}\times{}(b)^3+\frac{6!}{(6-4)!4!}(10.a)^{6-4}\times{}(b)^4+\frac{6!}{(6-5)!5!}(10.a)^{6-5}\times{}(b)^5+\frac{6!}{(6-6)!6!}(10.a)^{6-6}\times{}(b)^6$

$= \frac{720}{(720)1}(10.a)^{6-0}\times{}(b)^0+\frac{720}{(120)1}(10.a)^{6-1}\times{}(b)^1+\frac{720}{(24)2}(10.a)^{6-2}\times{}(b)^2+\frac{720}{(6)6}(10.a)^{6-3}\times{}(b)^3+\frac{720}{(2)24}(10.a)^{6-4}\times{}(b)^4+\frac{720}{(1)120}(10.a)^{6-5}\times{}(b)^5+\frac{720}{(1)720}(10.a)^{6-6}\times{}(b)^6$

$= 1(10.a)^{6-0}\times{}(b)^0+6(10.a)^{6-1}\times{}(b)^1+15(10.a)^{6-2}\times{}(b)^2+20(10.a)^{6-3}\times{}(b)^3+15(10.a)^{6-4}\times{}(b)^4+6(10.a)^{6-5}\times{}(b)^5+1(10.a)^{6-6}\times{}(b)^6$

$= (10.a)^{6-0}\times{}(b)^0+(6)(10.a)^{6-1}\times{}(b)^1+(15)(10.a)^{6-2}\times{}(b)^2+(20)(10.a)^{6-3}\times{}(b)^3+(15)(10.a)^{6-4}\times{}(b)^4+(6)(10.a)^{6-5}\times{}(b)^5+(10.a)^{6-6}\times{}(b)^6$

$= (10.a)^{6}\times{}(b)^0+(6)(10.a)^{5}\times{}(b)^1+(15)(10.a)^{4}\times{}(b)^2+(20)(10.a)^{3}\times{}(b)^3+(15)(10.a)^{2}\times{}(b)^4+(6)(10.a)^{1}\times{}(b)^5+(10.a)^{0}\times{}(b)^6$

$= (10.a)^{6}\times{}1+(6)(10.a)^{5}\times{}(b)^1+(15)(10.a)^{4}\times{}(b)^2+(20)(10.a)^{3}\times{}(b)^3+(15)(10.a)^{2}\times{}(b)^4+(6)(10.a)^{1}\times{}(b)^5+1\times{}(b)^6$

$= 1000000.a^6\times{}(1)+(6)100000.a^5\times{}(b)+(15)10000.a^4\times{}(b^2)+(20)1000.a^3\times{}(b^3)+(15)100.a^2\times{}(b^4)+(6)10.a\times{}(b^5)+1\times{}(b^6)$

$= 1000000a^6 + 600000a^5b + 150000a^4b^2 + 20000a^3b^3 + 1500a^2b^4 + 60ab^5 + b^6$

Therefore, the binomial expansion of $(10.a + b)^6$ is $1000000a^6 + 600000a^5b + 150000a^4b^2 + 20000a^3b^3 + 1500a^2b^4 + 60ab^5 + b^6$

### FAQs on Binomial Expansion of $(10a+b)^6$

1. How many terms are in the binomial expression of $(10a+b)^6$?

The number of terms in the binomial expansion of $(10a+b)^6$ is 7

2. How to find the binomial expansion of $(10a+b)^6$ ?

We use the Binomial theorem to find the expansion of $(10a+b)^6$ . The formula is (x + y)n = Σr=0n (nCr xn – ryr).

3. What is the binomial expansion of $(10a+b)^6$ ?

The binomial expansion of $(10a+b)^6$ is $1000000a^6 + 600000a^5b + 150000a^4b^2 + 20000a^3b^3 + 1500a^2b^4 + 60ab^5 + b^6$ .