# Determine 6g^2-3g^4+2g-g^3+5 is a Polynomial

Polynomial equations refers to equations that are formed with variables, exponents, and coefficients. Avail the simple method to Determine 6g^2-3g^4+2g-g^3+5 is a Polynomial in the following sections.

Ex: x^5+x^5+1+x^5+x^3+x (or) x^5+3x^5+1+x^6+x^3+x (or) x^3+x^5+1+x^3+x^3+x

Use '^' symbol to represent Power Sign

Determine a Expression is Polynomial:

## How to Determine 6g^2-3g^4+2g-g^3+5 is a Polynomial?

The given expression is 6g^2-3g^4+2g-g^3+5

A polynomial is a set of terms separated by + or - signs. Polynomials cannot include the following:

* Variables with negative or fractional exponents.

* Variables in the denominator.

* Variables that fall under a radical.

* Special characteristics (trigonometric functions, absolute values, logarithms, etc.)

As per the above given conditions, 6g^2-3g^4+2g-g^3+5 is a polynomial.

### Frequently Asked Questions on Is 6g^2-3g^4+2g-g^3+5 a Polynomial

1. Is 6g^2-3g^4+2g-g^3+5 a Polynomial?

Yes, the given expression 6g^2-3g^4+2g-g^3+5 is polynomial.

2. How do you determine 6g^2-3g^4+2g-g^3+5 is polynomial ?

A polynomial has variables followed by + or - sign and special characteristics.

3. Where can I find a step by step solution to determine the 6g^2-3g^4+2g-g^3+5 expression is polynomial?

Here, on this page, you will definitely find the step by step solution to determine the 6g^2-3g^4+2g-g^3+5 expression is polynomial. 